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RE P E AT E D-ME A S U R E S

AN A LY S I S O F VA R I A N C E

In all the analysis of variance situations we considered in Chapters 11 through 13,
the different cells or groupings were based on scores from different individuals.
Sometimes, however, a researcher measures the same individual in several different
situations. (If there are only two such conditions, such as before and after some
treatment, you can use a t test for dependent means, as described in Chapter 9.)
Consider a study in which participants’ task is to recognizing a syllable when em-
bedded in three word types flashed quickly on the screen: familiar words, unfamil-
iar words, and nonword sounds. The result is that for each participant you have an
average number of errors for each word type. Or suppose you do a study of psy-
chotherapy effects testing patients on their depression before, immediately follow-
ing, and again 3 months after therapy. In both examples, you have three groups of
scores, but all three scores are from the same people. These studies each employ a
repeated-measures design. 

Repeated measures designs are analyzed with a repeated-measures analysis
of variance. It has this name because the same participants are being measured re-
peatedly. This kind of design and analysis is also called a within-subjects design
and within-subjects analysis of variance because the comparison is within, not be-
tween, the different participants or subjects. In this chapter we consider the logic
and show you how to figure out a one-way repeated measures analysis of variance,
consider the assumptions for such analyses and how researchers handle situations
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where the assumptions might not be met, and then describe briefly how to expand
the basic one-way repeated measures analysis of variance to factorial repeated mea-
sures analysis of variance and to analyses of variance that include both repeated
measures factors and the usual between-subjects factors.

BASIC LOGIC 

Ironically, you carry out a one-way repeated-measures analysis of variance using
the procedures for a standard two-way between-subjects analysis of variance. But
this standard two-way analysis is modified in one crucial way. Just as with an ordi-
nary two-way analysis of variance, you treat your groupings (conditions) as one fac-
tor, usually as columns. The modification is that the rows, instead of another factor,
are participants. That is, there is one participant per row, and each participant has a
score in each column. (See the example in the top of Table W2-1.) Thus, one factor
is conditions and the other factor is participants; the cells have only one score each.
Your main effect for conditions, as in any analysis of variance, uses the population
variance estimate based on the deviation of each score’s condition’s mean from the
grand mean. However, what changes is the population variance estimate that is the
denominator of the F ratio. 

2 REPEATED-MEASURES ANALYSIS OF VARIANCE

TABLE W2-1 Scores and Scores Minus Participant’s Mean for Four Participants
Each Exposed to Target Syllable in Familiar, Unfamiliar, and
Nonword-Sound Word Types (Fictional Data)

Actual Scores:

Measure: Number of errors

Word Type

Familiar Unfamiliar Nonword
Participant Word Word Sound

A 9 3 0
B 6 2 1
C 11 6 4
D 10 5 3

Scores minus participant’s mean:

Measure: Number of errors

Word Type

Familiar Unfamiliar Nonword
Participant Word Word Sound

A 5 -1 -4
B 3 -1 -2
C 4 -1 -3
D 4 -1 -3



In a repeated-measures analysis of variance you can not use the within-cell
variation as your denominator for the F ratio. One problem is that there is no
within-cell variation! There is only one score per cell, and there cannot be any vari-
ation within a single score. An alternative that might seem reasonable on first
glance would be to use the average variation within each condition, as you would
do in an ordinary one-way between-subjects analysis of variance. This, however, ig-
nores the fact that the scores in each condition are from the same participants. Ig-
noring this is a problem for technical reasons (it violates the requirement that all
scores should be independent). More important, however, is that doing so would not
take advantage of the fact that you are interested in differences among conditions
over and above individual overall differences among participants. So how do you
take this repeated-measures nature of the study into account?

One solution that takes the repeated-measures nature of the study into account
would be to use for each score, not the actual score, but its difference from that par-
ticipant’s mean across conditions. For example, consider the scores in the top part
of Table W2-1 showing the number of errors for four participants who each were
exposed to the syllable embedded in 30 presentations each of Familiar Words, Un-
familiar Words, and Nonword Sounds. Participant A’s average is 4 errors (that is, 9
+ 3 + 0 divided by 3 comes out to 4). Thus, A’s errors in the Familiar Word condi-
tion are 5 above A’s average, A’s errors in the Unfamiliar Word condition are 1
below A’s average, and A’s errors in the Nonword Sound condition are 4 below A’s
average. The bottom part of Table W2-1 shows these scores (each score minus the
participant’s own mean) for all four participants.

Suppose you were to figure an ordinary between-subjects one-way analysis of
variance using these difference-from-the-participant’s-own-mean scores? Your re-
sults would come out in a way that takes into account, and properly takes advantage
of, the fact that the same participants are in each condition. You can see that there is
much less variance within conditions in this lower table than in the original scores
in the upper table. This is because we have eliminated the variation due to overall
between person tendencies—everyone’s scores only vary from their own mean so
that any variation among different participants’ means is eliminated. The result of
there being less variance is that the within-group population variance is smaller,
making the overall F larger. (This is the same principle we saw in Chapter 9 with
the t test for dependent means that a repeated measures design in general has more
power. Now you can see the reason for this: the repeated-measures design removes
the variance due to individual overall differences among participants.)

If you were actually to carry out a standard between-subjects one-way analysis
of variance with these scores in the bottom table (that is, taking the conditions as
groups and figuring the denominator of the F ratio based on the variation within
conditions) you would have to correct the degrees of freedom for the fact that you
are subtracting out mean scores. You would then get the correct results. But it
would also be a tedious process in a larger analysis because you would have to do
all these subtractions of scores from each participants’ means. This method also
gets complicated in more complex designs. 

Thus, in practice, researchers use a slightly different approach that accomplishes
the same thing. When figuring the denominator of the F ratio in a repeated-measures
analysis like this, they take advantage of the two-way set up and use the interaction
of participants by conditions. This interaction, like any interaction, is the difference
in pattern across one factor according to the level of the other factor. In this situation
it means the average variation in pattern across conditions for different participants.
Since it is looking at patterns, it is in effect subtracting out each participant’s mean.
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In fact, using this interaction term gives exactly the same result as using the scores
based on differences from each participants’s mean we described in the preceding
paragraph (after adjusting the degrees of freedom appropriately). 

Here is another way to think of this participant × condition interaction. Like
any interaction, its sum of squared deviations is the total squared deviations from
the grand mean minus all the other deviations—the deviations within cells and the
deviations for each of the factors. In this situation, however, the deviations within
cells (the deviation of each score from it’s cell’s mean) are all 0, because there is
only one score per cell. This means that in addition to subtracting out the devia-
tions for the main effect for conditions (each score’s condition’s mean minus the
grand mean), you are also subtracting out the deviations of each score’s partici-
pant’s mean from the grand mean. That is, by subtracting out the differences
among participant’s means, you are subtracting out the overall differences among
participants, which is as we have seen what gives such an advantage to repeated-
measures designs.

In sum, you can think of a one-way repeated measures analysis of variance
across conditions as a two-way analysis of variance in which one factor is experi-
mental condition and the other factor is participant, and in which your between-con-
ditions population variance estimate is as usual based on the deviations of each
score’s condition mean from the grand mean, but in which the within-groups popu-
lation variance estimate is based only on the deviation of scores within conditions
after adjusting for each participant’s overall mean.

FIGURING A ONE-WAY REPEATED MEASURES
ANALYSIS OF VARIANCE

Following the logic we have just considered, you figure a one-way repeated mea-
sures analysis of variance by setting it up as a condition × participant two-way de-
sign, figuring the two main effects and interaction in the usual way, and testing the
condition main effect with an F ratio of the between-condition population variance
estimate divided by the interaction population variance estimate. 

Here are the steps:

❶ Set up the scores with groupings across the top (the conditions factor on
which each participant has a score for each condition) and a row for each participant.

❷ Figure the sums of squares in the usual way for total (squared deviations
of each score from the grand mean), columns (squared deviations of each score’s
column’s mean from the grand mean), and rows (squared deviations of each
score’s row’s mean from the grand mean). Notice that in figuring the sum of
squares for rows, the row means are the same as each participant’s mean score.

❸ Figure the sum of squares for the interaction, figuring the deviation for
each score as its deviation from the grand mean minus the deviation of its column’s
mean from the grand mean and minus the deviation of its row’s mean from the
grand mean. (That is, you don’t need also to subtract the scores deviation from it’s
cell’s mean because all cells only have one score so this deviation is always 0.)

❹ Figure the degrees of freedom in the usual way for columns (the number
of columns minus 1), rows (the number of rows minus 1), and interaction (the
number of cells minus the degrees of freedom for rows and columns, minus 1). No-
tice that the degrees of freedom for rows is the number of participants minus 1.
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TABLE W2-2 One-Way Repeated Measures Analysis of Variance for Study of Errors in Recognition for Four Participants
Each Exposed to Target Syllable in Familiar, Unfamiliar, and Nonword-Sound Word Types (Fictional Data)

Measure: Number of errors

Word Type

Familiar Unfamiliar Nonword Row
Participant Word Word Sound ∑ M

A 9 3 0 12 4
B 6 2 1 9 3
C 11 6 4 21 7
D 10 5 3 18 6__ __ _

∑ 36 16 8
M 9 4 2

GM = 5

Squared deviations from grand mean

Participant Familiar Word Unfamiliar Word Nonword Sound

X Column Row Int X Column Row Int X Column Row Int

A 16 16 1 1 4 1 1 0 25 9 1 1
B 1 16 4 1 9 1 4 0 16 9 4 1
C 36 16 4 0 1 1 4 0 1 9 4 0
D 25 16 1 0 0 1 1 0 4 9 1 0

∑ 78 64 10 2 14 4 10 0 46 36 10 2

SSTotal = 78 + 14 + 46 = 138
SSColumns = 64 + 4 + 36 = 104
SSRows = 10 + 10 + 10 = 30
SSInteraction = 2 + 0 + 2 = 4

Check: SSTotal = SSColumns + SSRows + SSInteraction = 104 + 30 + 4 = 138

dfTotal = 12 – 1 = 11
dfColumns = 3 – 1 = 2
dfRows = 4 – 1 = 3
dfInteraction = 11 – 2 – 3 = 6

Check: dfTotal = dfColumns + dfRows + dfInteraction = 2 + 3 + 6 = 11

F needed for repeated measures (columns) effect (df 2, 6; p < .05) : 5.14

Analysis of Variance Table

Source SS df MS F

Between Conditions (Columns) 104 2 52.0 77.6
Participants (Rows) 30 3
Error (Interaction) 4 6 .67
Total 138 11

Conclusion: Reject the null hypothesis.

❶

❷

❸

❹

❺

�

❺ Figure the mean squares (the population variance estimates) in the usual
way for columns and the interaction. For columns, this means the columns’ sum
of squares divided by the columns’ degrees of freedom; for the interaction, this



means the interaction’s sum of squares divided by the interaction’s degrees of free-
dom. Notice that you do not figure a population variance estimate based on rows.
This would be the variance among participants, which is not usually of interest.

� Figure the F ratio for the repeated-measures condition effect: Divide the
mean square for columns by the mean square for the interaction. 

To test the significance of the repeated measures condition effect, you compare
your F to a cutoff F based on the appropriate numerator (columns) and denominator
(interaction) degrees of freedom.

Table W2-2 shows scores, figuring, and an analysis of variance table for the re-
peated-measures analysis of variance for the example we have been considering.

ASSUMPTIONS AND RELATED ISSUES

The assumptions for a repeated-measures analysis of variance include the usual
ones for an ordinary analysis of variance—normal distributions and equal variances
of the populations for each condition or condition combination. There is also an ad-
ditional assumption, called sphericity. Sphericity means that not only are the popu-
lation variances for each condition the same, but the population correlations among
the different conditions are the same. For example, if you have sphericity, the popu-
lation correlation between errors in the Familiar Word condition and errors in the
Unfamiliar Word condition will be the same as the correlation between errors in the
Familiar Word condition and errors in the Nonword Sounds condition. 

With the small sample size usually used in repeated-measures analysis of vari-
ance, it is hard to know whether you meet any of the assumptions. For example, re-
garding sphericity, correlations in small samples can vary quite considerably even if
in the population they are equal and correlations in small samples could be quite
similar even if in the population they are different. The difficulty of knowing
whether you have met the sphericity assumption is especially a problem because the
accuracy of the F test for repeated-measures analysis of variance can be strongly af-
fected by violations of this assumption. 

There are two widely used solutions for dealing with possible violations of the
sphericity assumption. One solution is to estimate how much the assumption is vio-
lated and statistically correct for it by using a comparison F distribution with fewer
degrees of freedom (so that you need a stronger result to be significant). Thus, when
you do a repeated measures analysis of variance with most computer programs (in-
cluding SPSS), in addition to the standard results, you get various results with cor-
rected degrees of freedom and the resulting more conservative (less extreme)
significance levels. 

For example, Figure W2-1 shows a key section of the SPSS output for the ex-
ample we have been considering. (The slight difference in the F figured in Table
W2-2 is due to rounding error.) Notice that in addition to the standard output
(“sphericity assumed”), you get three other results. These refer to different ways of
correcting for violation of the sphericity assumption. The correction is to the de-
grees of freedom. The Fs all come out the same, but since they are being compared
to different F distributions, the p levels are not the same. In this present example,
the uncorrected result (with df = 2, 6) has a p that rounds off to .000. But the cor-
rected results (with dfs = 1, 3) are all about .003.

In most real data sets the three different corrected results (that is, their dfs and p
values) also differ from each other. The “Lower-bound” correction, as the name
suggests, is the most conservative, giving the highest p value. The “Greenhouse-
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Geisser” correction is the next most conservative. The Huynh-Feldt correction is
the least conservative, but still widely (though not unanimously) agreed to be quite
accurate. Thus, most psychologists focus on the Huynh-Feldt correction. 

If the results using the Huynh-Feldt correction is not much different from the
uncorrected (sphericity assumed) results, for simplicity, researchers usually just re-
port the uncorrected results. However, if there is much difference between the cor-
rected and uncorrected results, then the Huynh-Feldt corrected results are usually
reported. In the present example, researchers would probably just report significance
as p < .01. Another solution to the concern about violating the sphericity assumption
is to use an entirely different approach, a special application of multivariate analysis
of variance (see Chapter 17). Thus, most computer printouts for a repeated-measures
analysis of variance also automatically include results of multivariate tests. The re-
sults using these tests are typically similar to those using the standard procedures. (In
the word-type example we have been considering, the p for the multivariate tests is
.003). Most psychologists use the standard procedures, although there is a strong mi-
nority opinion in favor of the multivariate approach. The advantage of the multivari-
ate approach is that you don’t have to make the sphericity assumption. On the other
hand, with small samples, the multivariate approach usually has lower power and you
get around the sphericity assumption in any case by using the Huynh-Feldt correction.

MORE COMPLEX REPEATED-MEASURES
DESIGNS AND MIXED DESIGNS

So far we considered the one-way repeated measures analysis of variance, in which
each of several participants are tested under different conditions. In this design,
there is one repeated-measures variable, such as Word Type. Sometimes, however,
a study includes two or more repeated-measures variables. For example, Word Type
could be crossed with length of the words, so that each participant might have
scores in six conditions, Familiar Long Words, Familiar Short Words, Unfamiliar
Long Words, and so forth. This would be an example of a two-way repeated-mea-
sures design. The repeated-measures two-way analysis of variance would be set up
like a three-way between-subjects analysis of variance, with one dimension for
Word Type, one dimension for Word Length, and one dimension for Participants.
The denominator of the F ratio for each of the two condition main effects (Word
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F I G U R E  W 2 - 1 Key section of SPSS output for study of errors in recognition for four
participants each exposed to target syllable in familiar, unfamiliar, and nonword-sound
word types (fictional data)
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Type and Word Length) and their interaction (Word Type × Word Length) would in
each case be the interaction of that term with the Participant factor. For example,
you would test the Word Length main effect by figuring an F ratio in which the nu-
merator is the population variance estimate based on the Word Length mean
squares and the denominator is the population variance estimate based on the Word
Length × Participant interaction mean squares. 

It is also possible to have in the same analysis both repeated-measures and or-
dinary between-subjects factors. For example, in the word recognition study each
participant might have only the three Word Types, but some participants might be
college age and other participants might be in their 70s. Thus, you would have
one repeated-measures factor (Word Type) and one between-subjects factor
(Age). This would be an example of a mixed design. In this example, the analysis
of variance allows you to test the main effect for the repeated measures factor
(Word Type), the main effect for the between-subject’s factor (Age) and the inter-
action (Word Type × Age).

The actual figuring of a mixed design is somewhat complicated, but two main
points are of interest. First, the between-subjects part of the analysis would come
out the same as if you were doing a one-way analysis for the between subjects fac-
tor using each participant’s mean across the conditions That is, in the example, it
would be the same result as if you just had two levels of age and the scores within
each were each participant’s mean number of errors across the three words types.
Second, the denominator of the F ratio for the repeated-measures main effect and
the interaction is based on the interaction of participant with the repeated-measures
factor, figured separately within each level of the between-subjects factor (for each
age group) and averaged. That is, in the example, the main effect for Word Type
and the Word Type × Age interaction would both be figured using as the denomina-
tor the Word Type × Participant interaction figured separately within each age
group and then averaged. Thus, the computer output from a mixed analysis of vari-
ance, gives two sets of results: One for the between-subjects and one part for the re-
peated-measures aspect.
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